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Abstract

This article comprehensively examines the current development, theoretical foundations,
pedagogical implications, and applications of artificial intelligence (AI) methods in
mathematics education. In recent years, advances in deep learning, natural language processing,
generative models, and student modeling techniques have led to transformative innovations in
mathematics education, such as adaptive learning, automated problem solving, personalized
feedback, and pedagogical agents. This study discusses the epistemological impacts of Al on
mathematical thinking processes and assesses critical limitations such as algorithmic biases,
data privacy, verifiability, pedagogical fit, and cognitive dependency. The findings suggest that
Al offers significant opportunities in mathematics education but requires careful pedagogical,

. . . . 671
ethical, and methodological considerations.
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1. Introduction

Artificial intelligence has become a growing focus of academic interest within educational
technologies since the 2010s. Mathematics education is positioned as a critical area for Al
applications because it requires abstract thinking, symbolic manipulation, reasoning processes,
and problem-solving skills (Holmes et al., 2019).

The emergence of generative models such as ChatGPT, DeepMind AlphaMath, and Khanmigo
has created a paradigmatic shift in mathematics education through the automation of
mathematical reasoning processes, modeling of student performance, and the expansion of
personalized instruction opportunities (Kasneci et al., 2023).

The use of artificial intelligence in the context of mathematics education is not limited to the
application of new technologies; it also raises fundamental questions about the nature of
learning processes. In particular, the extent to which Al-enabled systems can support higher-
level cognitive processes such as mathematical thinking, conceptual understanding, and
abstract reasoning is a topic of increasing debate in the existing literature. Systems that
recognize students' error patterns, suggest solution strategies, or model the problem-solving
process offer new possibilities in instructional design, but they also necessitate a
reinterpretation of the place of mathematical knowledge in cognitive development. This
necessitates a theoretical framework for balancing the pedagogical roles of Al with the teacher's
directive/inquiry guidance.
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Furthermore, the methodological diversity of Al research in mathematics education is also
noteworthy. Current studies span a wide spectrum, from explainable artificial intelligence
(XAI)-based student modeling approaches to predictive performance models based on large-
scale learning analytics data and verification mechanisms that assess the quality of generative
Al solutions. However, the literature lacks a holistic assessment of the extent to which these
different methods align with the epistemological and didactic principles of mathematics
education. Therefore, future research should focus on theoretically grounded, interdisciplinary
methodologies that clarify the relationship between algorithmic approaches and pedagogical
goals.

This article systematically examines the theoretical foundations, application areas, and research
agenda of Al technologies in mathematics education.

2. Theoretical Framework

Artificial intelligence-based educational technologies have become increasingly sophisticated
in terms of modeling, monitoring, and personalizing learning processes. Al systems used in
education generally fall into four main categories. Adaptive Learning Systems create
personalized learning experiences by monitoring student performance in real time and adjusting
content delivery accordingly (Liu & Koedinger, 2017). Intelligent Tutoring Systems (ITS), on
the other hand, provide instant, targeted feedback by modeling the student's cognitive state and
optimize the learning process (VanLehn, 2006). Educational Analytics and Student Modeling,
another field complementing these systems, focuses on predicting student behavior, learning
patterns, and success probabilities using machine learning methods. Generative Learning
Models, which have gained prominence in recent years, can automate high-level cognitive 672
processes such as problem solving, explanation generation, and content creation using large
language models (ChatGPT, Gemini, Claude, etc.).

Mathematical cognition consists of multidimensional processes that form the basis of learning.
These include skills such as conceptual understanding, computational fluency, logical
reasoning, representational transformations (e.g., translating verbal expression into symbolic
representation or graphical information into algebraic form), and strategy selection. Modern Al
systems, particularly with the development of large language models, have become capable of
automatically processing many of these cognitive processes. Al models can provide direct
cognitive support to the learning process through their capacity to perform representational
transformations, analyze patterns of student errors, derive process-oriented problem-solving
steps, and generate mathematical explanations. From this perspective, Al is no longer merely a
tool for evaluating learning outcomes; it has become a complementary and transformative
component of learning processes.

These Al-based systems draw on diverse theoretical approaches to understanding and modeling
mathematical cognition. For example, cognitive load theory explains how optimal learning
occurs within the limits of a learner's working memory capacity, and Al systems can apply this
theory to offer adaptive guidance to reduce cognitive load when students experience difficulty.
Similarly, constructivist learning theories emphasize the processes by which students actively
construct mathematical meaning, while Al-enabled tools can support this process by providing
students with opportunities to experiment, reflect, and reconstruct their own solution strategies.
In this context, Al is not only a technological component that models cognitive processes but
also a pedagogical tool that can be translated into concrete classroom applications of various
learning theories.
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Additionally, the Explainable AI (XAI) approach is becoming increasingly important in
mathematics education. Because mathematical accuracy requires high precision, a transparent
understanding of why and how an Al model generates a solution is critical for both pedagogical
trust and evaluation processes. XAl techniques can enhance teacher-student-Al interactions by
deconstructing the solution steps suggested by the model, identifying the source of errors, or
providing insight into students' faulty reasoning patterns. This presents a new research paradigm
in mathematics education that requires Al-based systems to produce solutions that are not only
performance-driven but also pedagogically interpretable and didactically meaningful.

3. Applications of Artificial Intelligence in Mathematics Education
3.1. Automated Problem Solving and Solution Explanation

Large language models have evolved to generate solutions for complex algebra, calculus, and
probability problems, while offering detailed, step-by-step explanations (Trinh et al., 2024).
This capability significantly contributes to students' ability to compare various solution
strategies and enhances their self-regulated learning skills by providing immediate, granular
insight into the problem-solving process.

3.2. Personalized Mathematics Instruction

In the realm of personalized instruction, Al-based adaptive platforms play a crucial role by
instantly measuring a student's knowledge level, dynamically adjusting the difficulty of tasks,
and predicting potential learning barriers (Koedinger & Aleven, 2016). A prominent example
of this approach is Khan Academy's Al-based tool, "Khanmigo," which utilizes these
mechanisms to tailor the educational experience to individual needs.

3.3. Automated Assessment 673

Al-supported assessment and evaluation systems have advanced to the point where they can
analyze open-ended mathematical expressions, classify specific errors within a student's
solution path, and seamlessly integrate with symbolic algebra systems. Recent studies indicate
that deep learning algorithms can now classify student solutions with an accuracy that rivals
human evaluation (Piech et al., 2015), offering scalable and precise feedback mechanisms.

3.4. AI-Supported Reasoning in Mathematical Proofs

Automated theorem provers such as Lean, Coq, and Isabelle are increasingly being utilized for
educational purposes to support reasoning in mathematical proofs. Through these tools,
students can verify their proof steps with Al assistance, explore alternative proof strategies, and
instantly identify logical errors in their work, thereby fostering a deeper understanding of
mathematical logic.

3.5. Mathematical Content Creation with Generative Models

Generative models assist mathematics teachers in content creation by automating several key
administrative and pedagogical tasks. These Al tools enable educators to efficiently generate
new questions, prepare student-specific worksheets, and present a variety of solution methods,
effectively reducing workload while enriching instructional materials (Kasneci et al., 2023).

4. Opportunities

Al-based educational approaches significantly enhance the quality of learning environments by
providing diverse opportunities for learning mathematics. The first of these opportunities is the
potential to reduce learning inequalities. Personalized learning systems help narrow
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achievement gaps stemming from socioeconomic differences by providing content tailored to
students' individual pace, knowledge level, and learning needs.

Another significant opportunity is the reduction of cognitive load. Al systems free up students'
mental energy from unnecessary tasks, allowing them to focus more on conceptual
understanding and higher-order thinking. Furthermore, teacher productivity is significantly
increased by Al technologies, as labor-intensive processes such as creating lesson plans, writing
questions, conducting assessments, and classifying student errors can be automated, freeing
teachers to dedicate more time to pedagogical design. Finally, Al-generated explanations and
alternative solutions offer a powerful contribution to the development of mathematical thinking
by allowing students to compare and contrast various ways of thinking. These diverse
opportunities clearly demonstrate the transformative potential of Al in mathematics education.

5. Limitations and Criticisms

Despite the significant opportunities Al offers in mathematics education, there are several
limitations and criticisms that must be considered. First, epistemological issues can sometimes
cause Al-generated mathematical explanations to be superficial, inaccurate, or inconsistent. The
phenomenon of "hallucination," particularly seen in large language models, poses a serious
pedagogical risk because misleading students can impair conceptual learning. Furthermore,
ethical and data privacy issues are also a significant area of debate. The sensitive nature of
student data raises the possibility of improper processing of this information or the introduction
of bias through biased algorithms (Williamson & Eynon, 2020). Furthermore, there are
concerns that excessive use of Al tools could undermine students' own problem-solving skills
and create learning addiction. Finally, the role of the teacher in Al-enhanced learning
environments must be redefined because the models for teacher-Al interaction, the distribution 674
of responsibility, and the boundaries of pedagogical control are not yet clear. These limitations
necessitate a careful, critical, and robust approach to the use of Al in education.

6. Method Proposal

The rapid development of Al applications in mathematics education increases the need for a
comprehensive research framework to ensure the pedagogically safe, effective, and sustainable
use of these technologies. Accordingly, the first component of the proposed model, pedagogical
fit analysis, aims to assess the extent to which Al tools align with mathematics curricula, course
objectives, and learning outcomes. This ensures that the use of Al advances without
compromising pedagogical foundations. The second component, cognitive process modeling,
examines how students' fundamental mathematical cognitive processes, such as conceptual
understanding, reasoning, representation transformation, and problem solving, are supported by
Al systems. This analysis reveals the ways in which Al contributes to students' cognitive
architecture.

The third element of the proposed framework, generalizability testing, aims to determine
whether the developed Al models demonstrate consistent performance across diverse student
profiles, grade levels, and diverse mathematical content. However, Al accuracy validation is
also a critical step, as the reliability of solutions, explanations, and problem-solving steps
generated by Al systems must be confirmed by independent methods. Another component of
the framework, long-term impact measurement, aims to assess how Al use impacts students'
learning habits, mathematical thinking skills, and cognitive development processes over time.
Finally, the ethical and professional standards framework requires the establishment of
fundamental principles such as student data protection, algorithmic fairness, teacher
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responsibilities, and classroom usage boundaries.

This framework is essential for the safe, transparent, fair, and pedagogically meaningful use of
Al systems in the classroom. It also provides a systematic basis for researchers, teachers, and
policymakers to evaluate future Al applications.

7. Conclusion

Artificial intelligence offers significant transformation potential in mathematics education.
When supported by an appropriate pedagogical framework, ethical principles, and algorithmic
verification processes, Al can be a tool that strengthens mathematical thinking, personalizes
learning, and enriches the professional roles of teachers. However, uncontrolled use or use
devoid of a critical foundation may threaten learning quality and cognitive development.
Therefore, the integration of Al into mathematics education requires an interdisciplinary
approach, rigorous verification, and pedagogical research.

In this context, for the sustainable and effective use of Al in mathematics education, technology
developers, educational researchers, teachers, and policymakers must work collaboratively. In
particular, preserving a culture of mathematical reasoning and proof, ensuring transparency in
algorithmic processes, and continuosusly evaluating classroom applications of Al tools are
among the fundamental components of a healthy integration process. Furthermore, increasing
teachers' Al literacy and adopting digital tools aligned with pedagogical design principles are
critical steps to ensuring that technology adds value to learning processes.

Future research should more comprehensively examine the long-term cognitive impact of Al-

based systems on mathematical concept learning and how they shape student autonomy and
mathematical thinking processes. Furthermore, standardizing explainability, data ethics, 675
security, and model validation mechanisms in educational contexts will contribute to the
development of AI applications within a trustworthy, fair, and pedagogically supportable
framework. Thus, Al can become not only an innovative tool in mathematics education but also

a component that enriches the epistemological foundations of the discipline and expands
learning opportunities.
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